He says humans will download their minds into computers one day. With a new robotics firm, Hans Moravec begins the journey from warehouse drones to robo sapiens | |
By Chip Walter | |
|
When word got around that Hans Moravec had founded an honest-to-goodness robotics firm, more than a few eyebrows were raised. Wasn't this the same Carnegie Mellon University scientist who had predicted that we would someday routinely download our minds into robots? And that exponential advances in computing power would cause the human race to invent itself out of a job as robots supplanted us as the planet's most adept and adaptive species? Somehow, creating a company seemed ... uncharacteristically pragmatic. But Moravec doesn't see it that way. He says he didn't start Seegrid Corporation because he was backing off his predictions. He founded the company because he was planning to help fulfill them. "It was time," he says, slowly rubbing his hand across his bristle-short hair. "The computing power is here." | ||||
The 56-year-old Moravec should know. Born in Kautzen, Austria, and raised in Montreal, he has been pushing the envelope on robotics theory and experimentation for the past 35 years, first as the graduate student at Stanford University who created the "Stanford Cart," the first mobile robot capable of seeing and autonomously navigating the world around it (albeit very slowly), and later as a central force in Car-negie Mellon's vaunted Robotics Institute. His iconoclastic theories and inventive work in machine vision have both shocked his colleagues and jump-started research; Seegrid is just the next logical step. Moravec pulls an image up onto one of the two massive monitors that sit side by side on his desk, like great unblinking eyes. It's six o'clock in the evening, but an inveterate night owl, he's just starting his "day." "I have been drawing these graphs for years about what will be possible," he comments. His mouse roams along dots and images that plot and compare the processing power of old top-of-the-line computers with their biological equivalents. There is the ENIAC, for example, that in 1946 possessed the processing capacity of a bacterium and then a 1990 model IBM PS/2 90 that once harnessed the digital horsepower of a worm. Only recently have desktop computers arrived that can deliver the raw processing muscle of a spider or a guppy (about one billion instructions per second). "At guppy-level intelligence," he explains, "I thought we could manage 3-D mapping and create a robot that could get around pretty well without any special preparation of its environment." | ||||
But no one was creating that robot, so in the late 1990s Moravec says he began to grow "very antsy" about getting one built. In 1998 he wrote an ambitious grant proposal that outlined software for a robotic vision system. The Defense Advanced Research Projects Agency quickly funded the proposal, and three and a half years and $970,000 later, with PCs just reaching guppy smarts, a working demonstration was complete. "It proved the principle," Moravec says. "We really could map with stereo vision, if we did things just right." But doing things just right required more than prototype software. Robotic evolution, he adds, "has to be driven forward by a lot of trial and error, and the only way to get enough is if you have an industry where one company is trying to outdo another." To help things along, he and Pittsburgh physician and entrepreneur Scott Friedman founded Seegrid in 2003. Their focus: the unglamorous but potentially huge "product handling" market. Industrial robots already flourish in tightly constrained environments such as assembly lines. Where they fail is in locations loaded with unpredictability. So Seegrid concentrated on creating vision systems that enable simple machines to move supplies around warehouses without any human direction. Not exactly the stuff of science fiction, Moravec agrees, and a long way from superintelligent robots, but he says you have to start somewhere. Nearly everything sold has to be warehoused at some point, and at some point it also has to be rerouted and shipped. Right now human workers move millions of tons of supplies and products using dollies, pallet jacks and forklifts. Seegrid's first prototype devices automate that work, turning wheeled carts into seeing-eye machines that can be loaded and then walked through various routes to teach them how to navigate on their own. The technology is built on Moravec's bedrock belief that if robots are going to succeed, the world cannot be adapted to them; they have to adapt to the world, just like the rest of us.
|
No comments:
Post a Comment